VID2SPEECH: beszédgenerálás néma videóból, deep learning alapon
A VID2SPEECH témakör során a beszélő arcának (elsősorban ajkának) mozgásából generálunk beszédet, tipikusan deep learning eszközök használatával. Ehhez többféle mély tanuló eljárás is alkalmazható, melyek a bemenő adatok (ajakvideó) és a cél adatok (beszéd spektrális paraméterei) különböző reprezentációi közötti összefüggést becsülik meg. "A beszédhangok az artikulációs szervek (hangszalagok, nyelv, ajkak stb.) koordinált mozgásának eredményéből állnak elő. Az artikuláció és a keletkező beszédjel kapcsolatát gépi tanulás alapú eszközökkel is vizsgálták már. Az artikuláció-akusztikum konverzió eredményei a szakirodalomban elsősorban az ún. 'Silent Speech Interface' (SSI, magyarul 'némabeszéd-interfész') rendszerek fejlesztéséhez járulnak hozzá. Az SSI lényege, hogy az artikulációs szervek hangtalan mozgását felvéve a gépi rendszer ebből beszédet szintetizál, miközben az eszköz használója valójában nem ad ki hangot. A hallgató feladata mély neurális hálózat alapú (pl. Konvolúciós és rekurrens neurális hálózatok) megoldás megismerése és továbbfejlesztése a Silent Speech Interface témakörben. A kidolgozott módszerek hozzájárulhatnak beszédsérültek számára kommunikációs segédeszköz készítéséhez."
Voice Conversion Technology and its Application with Emotional Speech
Speech is the most used and natural way for people to communicate. The goal of a VC system is to determine a transformation that makes the source speaker's speech sound as if the target speaker uttered it. This project aims to present a rule-based voice conversion system for emotion capable of converting neutral speech to emotional speech (i.e., angry, fear, happy, sad, surprise, etc.).